Treatment of heart failure: past, present and future

John McMurray
Eugene Braunwald Scholar in Cardiovascular Diseases, Brigham and Women’s Hospital, Boston & Visiting Professor, Harvard Medical School
Treatment of low LVEF CHF
NYHA class III-IV: Moderate-severe symptoms

<table>
<thead>
<tr>
<th>Class I</th>
<th>Class II • Mild</th>
<th>Class III • Moderate</th>
<th>Class IV • Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>No symptoms</td>
<td>Mild symptoms - occasional swelling</td>
<td>Noticeable limitations in ability to exercise or participate in mildly strenuous activities</td>
<td>Unable to do any physical activity without discomfort</td>
</tr>
<tr>
<td>Can perform ordinary activities without any limitations</td>
<td>Somewhat limited in ability to exercise or do other strenuous activities</td>
<td>Comfortable only at rest</td>
<td>Some HF symptoms at rest</td>
</tr>
</tbody>
</table>
CONSENSUS
Co-operative North Scandinavian Survival Trial

253 patients, NYHA class IV only (no LVEF entry requirement). Furosemide 98% (mean dose 205mg), digoxin 93% and spironolactone 53% (mean dose 80mg). Mean follow-up 6.3 months.

Mortality reduced from 44% to 26%
RRR 40% P=0.002

Swedberg et al NEJM 1987
RALES
Randomized ALdactone Evaluation Study

1663 patients, NYHA class III-IV, LVEF ≤0.35. ACE-i 95%, digoxin 73% and beta blockers 10.5%. Mean follow-up 24 months.

30% relative risk reduction in mortality P<0.001

Pitt et al. NEJM 1999
2289 patients, NYHA class III-IV, LVEF ≤0.25. ACE-i/ARB 97%, digoxin 66% and spironolactone 20%. Mean follow-up 10.4 months

Death from all causes
35 % risk reduction

Death or hosp. from all causes
24 % risk reduction

Packer et al NEJM 2001
Biventricular/multi-site pacing or “cardiac resynchronization” therapy
CRT for severe HF: two pivotal trials

COMPANION
CV death or CV hospitalization

CARE-HF
Death or CV hospitalization

Event free survival (%)

Days

Cleland et al. NEJM 2005
Cumulative benefit of poly-pharmacy (and CRT) in severe HF
Ventricular assist devices
HeartMate II trial

200 patients, ineligible for transplantation. Randomized 2:1 continuous- vs. pulsatile-flow device. Mean age 64 years and mean LVEF 17%.
Evidence-based treatment of systolic heart failure

NYHA class II-III: Mild-moderate symptoms

- Class I: No symptoms. Can perform ordinary activities without any limitations.
- Class II: Mild symptoms. Occasional swelling.
- Class III: Noticeable limitations in ability to exercise or do other strenuous activities. Can participate in mildly strenuous activities.
- Class IV: Unable to do any physical activity without discomfort. Some HF symptoms at rest.
Pharmacotherapy
SOLVD Treatment Trial
Studies of Left Ventricular Dysfunction

2569 patients, NYHA class II-IV, LVEF ≤0.35. Diuretic 85%, digoxin 67%. Followed for a mean of 41 months

Cumulative mortality (%) vs. years

Relative risk reduction = 16%

p=0.0036

SOLVD Investigators NEJM 1991
2647 patients, NYHA class III/IV, LVEF ≤0.35. Diuretic 99%, digoxin 52%, ACEi 96%. Followed for a mean of 1.3 years.

CIBIS 2
Cardiac Insufficiency Bisoprolol Study 2

34% Reduction in Deaths

Survival

Time after inclusion (days)

Lancet January 1999
MERIT HF
Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure

3991 patients, NYHA class II-IV, LVEF ≤0.40. Diuretic 91%, digoxin 64%, ACEi/ARB 96%. Followed for a mean of 12 months

34% Reduction in Deaths

Lancet June 1999
2128 patients ≥70 yrs with prior HF hospitalization or LVEF ≤0.35
Followed for a mean of 21 months

SENIOERS
Study of the Effects of Nebivolol Intervention on Outcomes
and Rehospitalisation in Seniors with Heart Failure

Beta-blockers are the most evidence-based therapy in heart failure

MERIT-HF

- Placebo vs. Metoprolol CR/XL
- $P=0.0062$, Risk reduction = 34%

CIBIS-2

- Placebo vs. Bisoprolol
- $P=0.0001$, Risk reduction = 34%

COPERNICUS

- Placebo vs. Carvedilol
- $P=0.00013$, Risk reduction = 35%

SENIORS

- Placebo vs. Nebivolol
- $P=0.214$, Risk reduction = 12%
The stunning success of ACE inhibitors and beta blockers in mild-moderate HF

- SOLVD-T 1991: Diuretic/digoxin 15.7%
- CIBIS 2 1999: Diuretic/digoxin ACE inhib. 12.4%, Diuretic/digoxin ACE inhib. 13.2%, Diuretic/digoxin ACE inhib. Beta-blocker 8.8%
The cornerstone of therapy

ACE inhibitor (or ARB)
Beta-blocker
Can we do even better?

Adding to an ACE inhibitor:

• Angiotensin receptor blocker?
• Sinus node inhibitor?
• Aldosterone antagonist?
CHARM-Added
Candesartan in Heart failure: Assessment of Reduction in Mortality and morbidity

2548 patients, NYHA class II-IV, LVEF ≤0.40. Diuretic 90%, digoxin 59%, ACEi 100%; β-blocker 56%, spironolactone 17%. Followed a median of 41 months.

![Graph showing the proportion with cardiovascular death or hospital admission for CHF over time, indicating lower rates for Candesartan compared to Placebo.](Image)

Placebo
- Hazard ratio 0.85
- 95% CI 0.75–0.96, p=0.011
- Adjusted hazard ratio 0.85, p=0.010

Candesartan

McMurray et al Lancet 2003
Sinus node inhibition

\(I_f \) current inhibition with ivabradine
SHIFT
Systolic Heart failure treatment with the If inhibitor ivabradine Trial

6558 patients, NYHA class II-IV, LVEF ≤0.35, HF hosp. within 1 year, sinus rhythm, HR ≥70/min. Diuretic 84%, digoxin 22%, ACEi 79%/ARB 14%, β-blocker 90%, aldo. antagonist 60%. Followed for a median of 23 months

![Graph showing the comparison between Placebo (937 events) and Ivabradine (793 events) with a log-rank test p-value of 0.82 (95% CI 0.75-0.90), p<0.0001.](image)
SHIFT: Components of primary endpoint

Cardiovascular death

- Placebo (491 events)
- Ivabradine (449 events)

HR 0.91 (95% CI 0.80–1.03), p=0.128

HF hospitalization

- Placebo (672 events)
- Ivabradine (514 events)

HR 0.74 (95% CI 0.66–0.83), p<0.0001

Months of follow-up
SHIFT: The problem in interpretation

<table>
<thead>
<tr>
<th></th>
<th>Ivabradine group (n=3241)</th>
<th>Placebo group (n=3264)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean daily dosage of β blocker (mg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carvedilol</td>
<td>25.0</td>
<td>25.0</td>
</tr>
<tr>
<td>Bisoprolol</td>
<td>6.2</td>
<td>6.2</td>
</tr>
<tr>
<td>Metoprolol succinate</td>
<td>90.2</td>
<td>89.5</td>
</tr>
<tr>
<td>Metoprolol tartrate</td>
<td>66.8</td>
<td>71.2</td>
</tr>
<tr>
<td>Nebivolol</td>
<td>5.9</td>
<td>5.9</td>
</tr>
<tr>
<td>Patients at target dose of β blocker</td>
<td>26%</td>
<td>26%</td>
</tr>
<tr>
<td>Patients at ≥ 50% target dose of β blocker</td>
<td>56%</td>
<td>56%</td>
</tr>
</tbody>
</table>
What effect will SHIFT have on clinical practice?

Ivabradine in heart failure—no paradigm SHIFT...yet

Wisely and slowly, they stumble that run fast

William Shakespeare (Romeo and Juliet, Act II, Scene iii)

In *The Lancet* today, investigators provide support for Shakespeare’s admonishment, in two articles from the Systolic Heart failure treatment with the I_f inhibitor ivabradine Trial (SHIFT). The investigators randomised baseline heart rates (<77 beats per min). Ivabradine was well tolerated with relatively few, although statistically significant, mechanism-related adverse events, such as bradycardia, atrial fibrillation, and visual disturbances. The accompanying analyses from the second SHIFT report showed a proportional relation between baseline heart rate and subsequent outcomes in the placebo-

John Teerlink
Is aldosterone antagonism beneficial in mild HF?
The missing piece of the aldosterone-antagonist jigsaw

LVSD and HF/diabetes after AMI
Mild HF symptoms (NYHA class II)
Severe HF symptoms (NYHA class III/IV)

EPHESUS EMPHASIS-HF RALES
EMPHASIS-HF
Eplerenone in Mild Patients Hospitalization And Survival Study in Heart Failure

2737 patients, ≥55 years, NYHA class II, with CV hospitalization within 6 months (or elevated BNP/NT pro BNP) and LVEF ≤0.30 (or ≤0.35 if QRS duration >130msec. Followed for a median of 21 months

Hazard ratio, 0.63 (95% CI, 0.54–0.74)
P<0.001

Zannad, McMurray et al NEJM 2011
EMPHASIS-HF: Other outcomes

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Hazard ratio (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-cause death</td>
<td>0.76 (0.62-0.93)</td>
<td>0.008</td>
</tr>
<tr>
<td>Cardiovascular death</td>
<td>0.76 (0.61-0.94)</td>
<td>0.01</td>
</tr>
<tr>
<td>All-cause death or HF hospitalization</td>
<td>0.65 (0.55-0.76)</td>
<td><0.001</td>
</tr>
<tr>
<td>All-cause death or all-cause hospitalization</td>
<td>0.75 (0.66-0.85)</td>
<td><0.001</td>
</tr>
<tr>
<td>HF hospitalization</td>
<td>0.58 (0.47-0.70)</td>
<td><0.001</td>
</tr>
</tbody>
</table>
Devices
SCD-HeFT
Sudden Cardiac Death in Heart Failure Trial

2521 patients with LVEF ≤0.35 and NYHA class II-III HF
Followed for a median of 45.5 months

Mortality rate

- Placebo
- Amiodarone, p=0.53
- ICD therapy, p=0.007

Can we do even better than optimal medical therapy and an ICD?

Adding CRT to OMT and an ICD:

• MADIT-CRT
• RAFT
MADIT-CRT
Multicenter Automatic Defibrillator Implantation Trial with Cardiac Resynchronization Therapy

1820 patients with LVEF ≤0.30, NYHA class I-II HF, sinus rhythm and QRS duration ≥120 ms. Followed for a median of 2.4 yr (stopped early). Randomized 3:2 CRT+ICD vs ICD.

HR 0.66 (0.52–0.84)

P<0.001
MADIT-CRT: components of primary endpoint

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Hazard ratio (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death or heart failure</td>
<td>0.66 (0.52-0.84)</td>
<td>0.001</td>
</tr>
<tr>
<td>Heart failure only</td>
<td>0.59 (0.47-0.74)</td>
<td><0.001</td>
</tr>
<tr>
<td>Death at any time</td>
<td>1.00 (0.69-1.44)</td>
<td>0.99</td>
</tr>
</tbody>
</table>
1798 patients with LVEF ≤0.30, NYHA class II-III HF, sinus rhythm and QRS duration ≥120 ms. Followed for median of 3.3 yr. Primary outcome death or HF hospitalization.
RAFT: Secondary outcomes

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Hazard ratio (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death from any cause</td>
<td>0.75 (0.62-0.91)</td>
<td>0.003</td>
</tr>
<tr>
<td>Death from cardiovascular cause</td>
<td>0.76 (0.60-0.96)</td>
<td>0.02</td>
</tr>
<tr>
<td>Hospitalization for heart failure</td>
<td>0.68 (0.56-0.83)</td>
<td><0.001</td>
</tr>
</tbody>
</table>
MADIT-CRT and RAFT: Sub-group analyses

- Both trials showed an interaction between sex, QRS duration and QRS morphology and effect of CRT
- More benefit in: women (vs. men), QRS ≥150 msec (vs. <150 msec) and LBBB (vs. RBBB)
What’s in the pipeline?

- Chronic HF with low LVEF
- Chronic HF with preserved LVEF (HF-PEF)
- Acute HF

Focus on ongoing large-scale mortality/morbidity outcome studies
Can we beat an ACE inhibitor?

ATMOSPHERE: design overview

Primary outcome: CV death or heart failure hospitalization
(event driven: 2162 patients)

- **Open-label run-in**
 - Enalapril
 - Enalapril + aliskiren

- **Randomization**
 - Enalapril 10 mg twice daily (n=2,200)
 - Aliskiren 300 mg once daily (n=2,200)
 - Aliskiren 300mg/enalapril 20 mg Daily (n=2,200)

- **Double-blind**
 - ~48 weeks (event driven)
LCZ 696: an Angiotensin Receptor Neprilysin inhibitor (ARNi)

Molecular complex of:

- An ARB - valsartan
- A NEP/neprilysin inhibitor – AHU 377

NEP inhibition blocks breakdown of natriuretic peptides and augments plasma concentrations
A multicenter, randomized, double-blind, parallel group, active-controlled study to evaluate the efficacy and safety of LCZ696 compared to enalapril on morbidity and mortality in patients with chronic heart failure and reduced ejection fraction.

Primary objectives
- Evaluate if LCZ696 is superior in delaying time to first occurrence of either CV mortality or HF hospitalization in CHF pts (NYHA Class II – IV) with reduced ejection fraction.

Secondary objectives
- All cause mortality
- Renal progression (eGFR change)
- Clinical summary score (assessed by KCCQ)

Patient population
- 7980 patients with CHF NYHA class II – IV and reduced ejection fraction (LVEF < 40%)
- BNP>150 pg/ml (NTproBNP > 600 pg/ml) or BNP > 100 pg/ml (NTproBNP > 400 pg/ml) and hospitalization within the last 12 months
Treating anaemia in HF with an ESP (darbepoetin)?
Hypothesis: Darbepoetin will improve outcomes in patients with HF and anaemia

Population: 3400 patients with LVEF ≤0.35 and NYHA class III-IV HF/class II and CV admission/ER visit within 12 months

Anaemia: Hb ≥9.0 g/dL and ≤12.0 g/dL

Intervention: Darbepoietin sc vs placebo; target Hb 13.0-14.5 g/dL

Primary endpoint: Death or HF hospitalisation

Status: Started summer 2006
WARCEF: HF and the risk of stroke
Hypothesis: Which of two commonly used treatments warfarin or aspirin is better for preventing death and stroke in patients with low LVEF?

Population: ~2860 patients NYHA I-IV with LVEF ≤35% and not in AF

Intervention: Aspirin 325mg or warfarin (INR 2.5-3.0)

Primary endpoint: Death or stroke

Status: Recruitment started October 2002/estimated study completion 2012
New CRT trials
Patients
NYHA Class I-III, with advanced AV block, not currently indicated for CRT, LVEF ≤ 45%

Objective
Assess whether biventricular pacing (BiV) will limit the clinical progression of heart failure when compared with atrial synchronous RV pacing

Primary endpoint
Composite of mortality, morbidity & cardiac function

Size & Locations
Up to 1,636 patients in up to 65 centers in North America

Study period
Variable; Up to two interim analyses planned

Status
Enrolling

Sponsor
Medtronic
Hypothesis: is CRT beneficial in patients with a narrow QRS with echo dyssynchrony?

Population: 2330 patients with LVEF ≤0.35 and LVEDD ≥55mm. NYHA class III-IV. Indication for ICD. QRS duration <130 ms. Optimal drug therapy.

Echo dyssynchrony: TDI intra-LV dyssynchrony (opposing wall delay of ≥ 80 ms in the 4-C or apical LA view. Speckle-tracking radial strain septal-posterior wall delay ≥ 130 ms.

Intervention: CRT-D on vs. CRT-D off

Primary endpoint: Death or HF hospitalisation

Status: Started summer 2008
We still do not have evidence-based treatment
Treatment Of Preserved Cardiac function heart failure with an Aldosterone antagonist
Hypothesis: Spironolactone will reduce morbidity and mortality in mild HF and preserved LV function

Population: 4500 patients >50 yrs with NYHA II HF (and admission or elevated BNP), EF ≥45%

Intervention: Spironolactone (15-45 mg) vs placebo

Primary endpoint: CV death, RCA, HF hospitalisation

Status: Recruitment started 2008; slow; expected completion uncertain
Acute heart failure

- Ultrafiltration: Aquapheresis
- Bilevel or continuous positive airway pressure: Preload reduction
- Nitrates, nitroprusside, dobutamine: Arterial vasodilation
- Dobutamine, dopamine, milrinone: Increased inotropy
- Nitrates, morphine: Venodilation
- Furosemide: Natriuresis
Cardiac myosin activator: omecamptiv Mecarbil

Cardiac Myosin Activation: A Potential Therapeutic Approach for Systolic Heart Failure

Online Science March 2011

Chemically Tuned Myosin Motors

Leslie A. Leinwand and Richard L. Moss
Randomization

Acute HF
LVEF<40%
BNP >400pg/mL
SBP≥110mmHg
~1,800 patients

- **Aliskiren 150 mg**
- **Aliskiren 300 mg**
- **Placebo**
- **Conventional therapy**

- **Primary outcome: CV death or HF hospitalization at 6 months (381 events)**

- In-hospital entry and initiation
 - 2 weeks
 - ~15 months (event-driven)*

*Except concomitant use of an ACEI and ARB

*Follow-up at Week 2, Month 1, 2 and 3, with on-going assessments every 3 months thereafter
Surgery
Surgical Treatment for Ischemic Heart Failure (STICH)
STICH: coronary revascularization results

Premiering ACC
New Orleans
April 2011
“Regenerative medicine”: stem cell therapy
Not discussed because of time

- **Other positive treatment trials:** e.g. DIG (digoxin); HF-ACTION (exercise); GISSI-HF (PUFA); A-HeFT (H-ISDN); ASCEND-HF (nesiritide in acute HF)

- **Important neutral treatment trials:** e.g. CORONA, GISSI-HF (both rosuvastatin); I-PRESERVE (irbesartan in HF-PEF); AF-CHF (rate vs. rhythm control); PROTECT (rolofylline - renal function); STICH (LV remodeling surgery).

- **Important negative treatment trials:** e.g. ANDROMEDA (dronedarone)

- **Monitoring trials:** – BNP/NT-pro BNP; remote monitoring; implanted monitors (CHAMPION)
Summary: heart failure clinical trial milestones

- **1987** ACE inhibitors, severe HF (CONSENSUS)

- **1991** ACE inhibitor mild/mod HF (SOLVD)

- **1999** Aldosterone antagonist severe HF (RALES)

- **1999-2001** Beta blockers mild-severe HF (CIBIS-2, MERIT-HF, COPERNICUS)

- **2001-2003** ARBs mild/mod HF (Val-HeFT, CHARM)

- **2004/5** CRT severe HF (COMPANION, CARE-HF)

- **2005** ICD (SCD-HeFT)

- **2009** HeartMate II (LVAD)

- **2009** HF-ACTION (exercise)

- **2010** I_f current inhib. (SHIFT)

- **2010** CRT mild/mod HF (MADIT-CRT, RAFT)

- **2010** Aldo. Antag. mild/ mod HF (EMPHASIS-HF)
Treatment algorithm for patients with symptomatic heart failure (NYHA functional class II – IV) and a reduced left ventricular ejection fraction (LVEF ≤35%)

1. **ACE-I (or ARB if not tolerated)**
 - ADD Beta-blocker
 - Still NYHA Class II-IV?
 - yes
 - no

2. **ADD aldosterone antagonist (or ARB if not tolerated)**
 - Still NYHA Class II-IV?
 - yes
 - no

3. **LVEF ≤35%?**
 - yes
 - no

4. **QRS duration ≥150 msec?**
 - yes
 - Consider CRT-P/CRT-D
 - no
 - Consider ICD

5. **Still NYHA Class II-IV?**
 - yes
 - no

6. **No further specific treatment. Continue in disease management programme.**

7. **Consider ivabradine if: sinus rhythm/HR ≥70 bpm/LVEF ≤35%**
 - Digoxin
 - Hydralazine/nitrate

8. **IF NYHA class IV: consider LVAD, transplantation.**