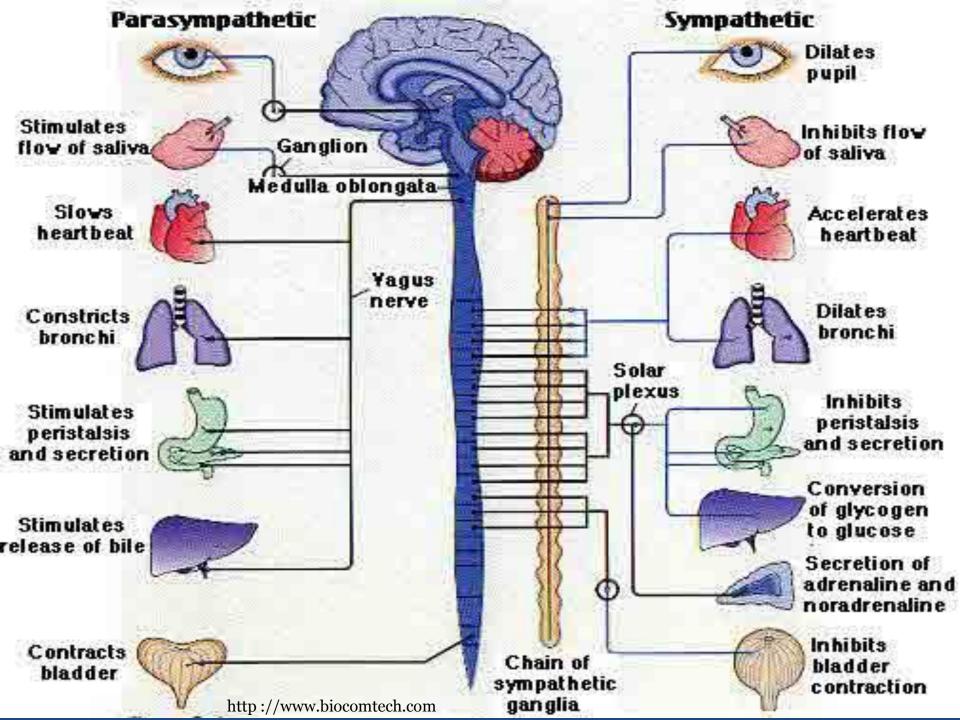
HEART RATE MANAGEMENT the Possible Role in Hypertension

Arieska Ann Soenarta Cardiovascular Center Harapan Kita, Jakarta


2011 Regional Cardiology Symposium Seoul - Korea

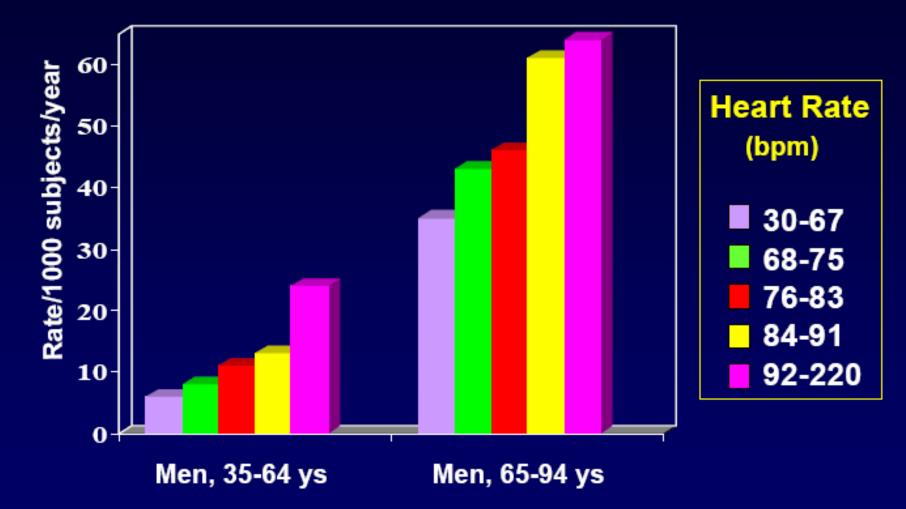
Factors involve in Heart Rate Management :

INTRINSIC CONTROL :
 □ Cardiac Tissue → self regulating

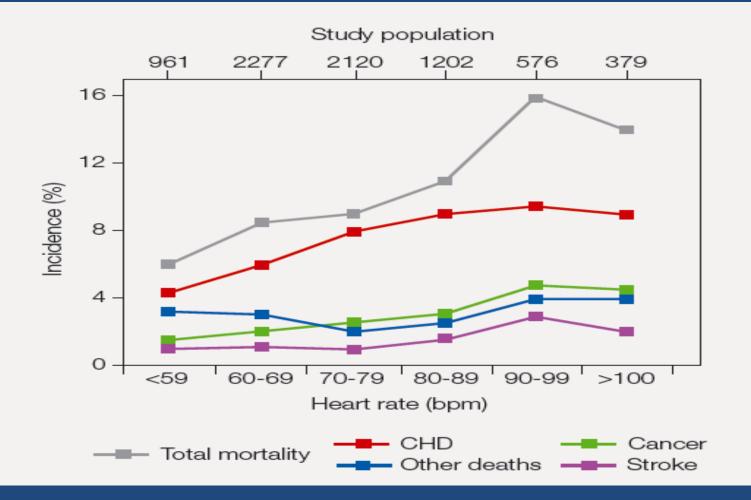
EXTRINSIC CONTROLS :

 Hormonal Responses
 Commands From Nervous Systems

ORIGIN of HEART BEAT :


 Sino – Atrial (SA) Node of the Heart → impulses <u>+</u> 100 – 120/min. at rest

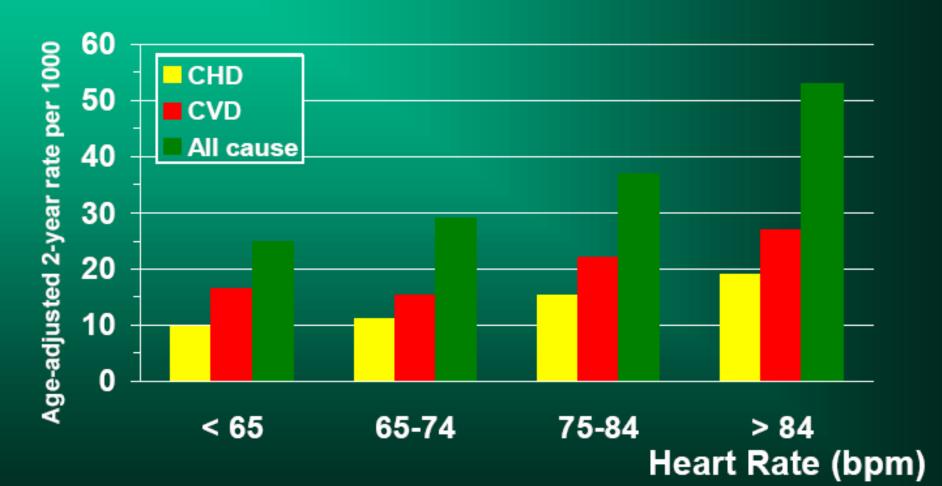
 Activity of SA Node is controlled by the Autonomic Nervous System (ANS) → Resting Heart Rate in normals 50 - 70 Bpm


Epidemiologic Data of Elevated Heart Rate

Heart Rate in General Population

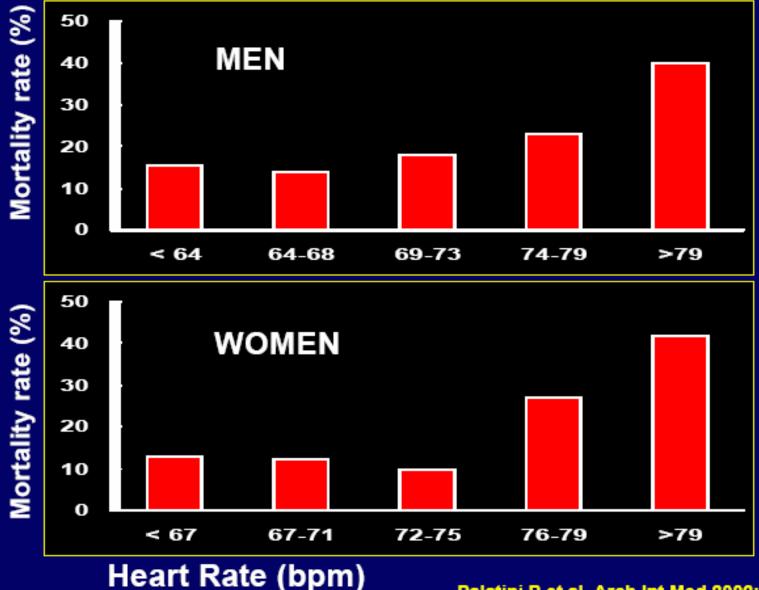
Heart Rate and All-Cause Mortality The Framingham Study

All Cause and Cause Specific Mortality and Heart Rate in General Population

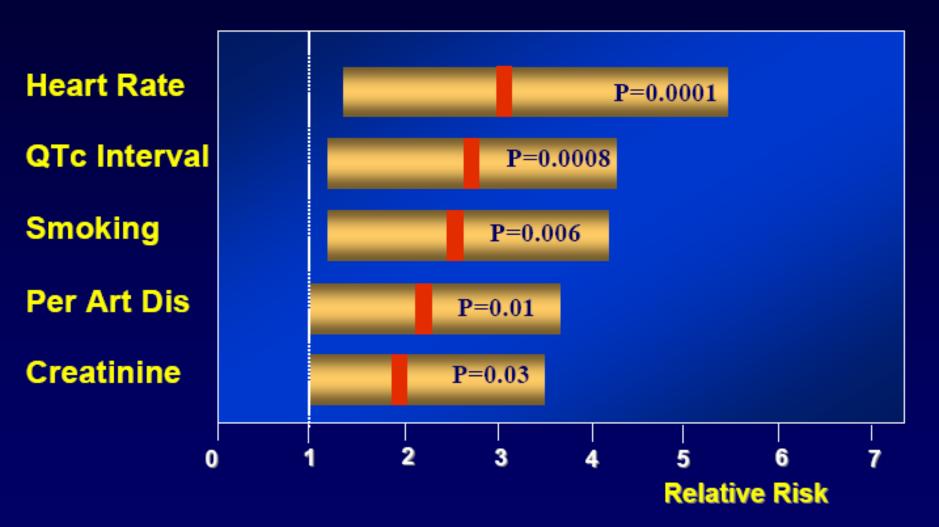


Modified from Wilhelmsem I. et al EHJ 1996;7:279-288

Heart Rate as a Risk Factor in Subjects with Hypertension or Diabetes (6 Studies)

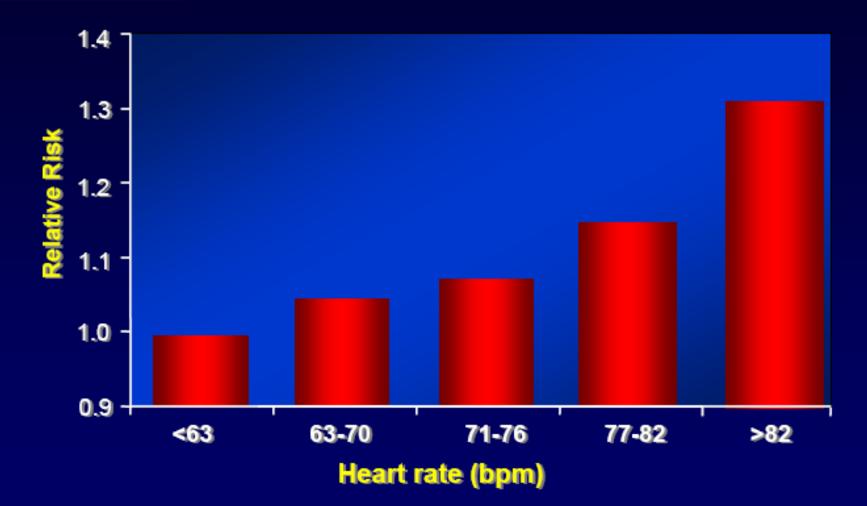

Negative studies: Total mortality = 0 CV mortality = 0

ASSOCIATION OF HEART RATE WITH MORTALITY RATE AMONG MEN WITH HYPERTENSION (The Framingham Study)


Gillman et al., Am Heart J 1993; 125: 1148

Mortality Rate by Quintile of Clinic Heart Rate in the ISH Patients from the Syst-Eur Study

Palatini P et al, Arch Int Med 2002;162:2313


Significant Predictors of CV Death in 475 Type 2 Diabetics. The Bremen Diabetes Study.

Adapted from Linnemann B, Janka BU, Exp Clin Endocrinol Diabetes 2003;111:215

Heart Rate as a Risk Factor in Acute or Chronic Coronary Syndromes 14 Studies

Heart rate and CV mortality in 24,913 patients with chronic ischemic heart disease (CASS Study)

Adapted from Diaz A et al., Eur Heart J 2005;26:967

Association: increased heart rate as a cardiovascular risk factor

General population

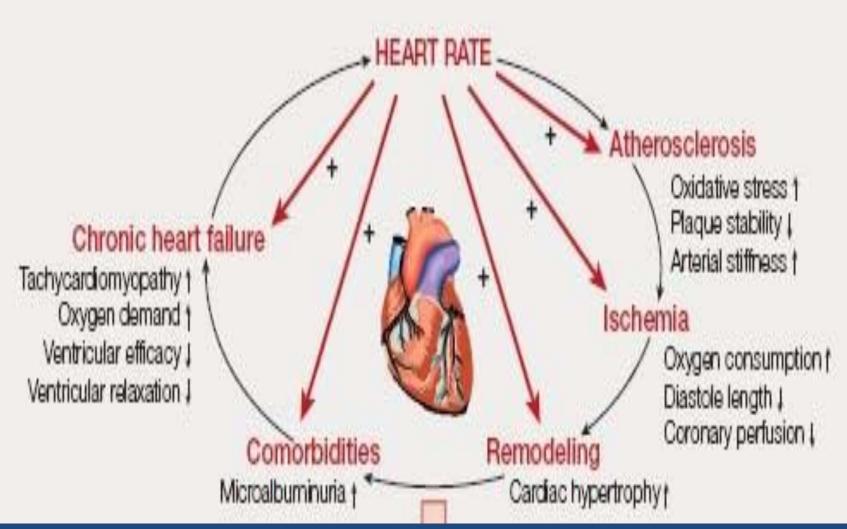
Dyer et al.1980¹⁰ Kannel et al. 1987⁹ Gillum et al.1991¹¹⁹ Benetos et al. 1999¹² Kristal-Boneh et al. 2000¹³ Jouven et al. 2005¹¹ Hypertensive individuals

Gillman et al. 1993 ¹²⁰ Benetos et al. 1999 ¹² Thomas et al. 2001 ¹²¹ Farinaro et al. 1999 ¹²² Palatini et al. 2002 ¹²³ Coronary artery disease

Kjekshus et al. 1986 ¹²⁴ Wong et al. 1989 ¹²⁵ Hjalmarson et al. 1990 ¹⁴ Copie et al. 1996 ¹⁵ Heidland et al. 2001 ¹⁰⁶ Diaz et al. 2005 ¹⁶ Fox et al. 2008 ¹⁷

JACC 2010;56(24):1973-1983

Heart Rate and Sympathetic Activity


- High heart rate → altered balance of the autonomic nervous system tone characterised <u>by high sympathetic and/or reduced</u> <u>vagal activity</u>
- <u>Sympathetic overactivity</u> → may cause <u>insulin resistance</u> <u>syndrome</u> through acute and chronic stimulation of both alfa and beta adrenergic receptors
- Patient with <u>hypertention</u> → <u>increased sympathetic activity</u> → develop <u>obesity</u>
- By promoting the development of <u>left ventricular and vascular</u> <u>hypertrophy</u> → the occurance of <u>coronary thrombosis</u> through increased blood viscosity, platelet activation, procoagulant state developed by <u>high sympathetic activity</u> explaine the precipitation of CV event in individual with high heart rate

Palatini et. Al, Drugs 2006, 66 (2) : 133-144

Heart Rate Determine Metabolic Demand

- <u>Increased heart rate</u> is associated <u>with high blood pressure</u> and <u>metabolic disturbances</u> that lead to <u>hypertension</u>, <u>atherosclerosis</u> and <u>increased cardiovascular morbidity and</u> <u>mortality</u>
- Whole body temperature and energy needs are controlled by <u>heart activity</u> → via its rate
- The <u>heart rate's</u> intensity and frequency of <u>shear stre</u>ss → is used to regulate <u>endothelial function and vascular tone</u>.
- A close <u>link</u> between <u>body temperature</u>, <u>metabolism and heart</u> <u>rate</u> has been observed, and so <u>heart rate</u> may determine <u>metabolic demand and 'control' the duration of life</u>.

Clinical and Experimental Evidence for the Potential Role of Heart Rate along the Cardiovascular Continuum

Medicographia 2009, 31(4) : 362

Heart Rate, Atherosclerosis and CV Events

The additive effect of high heart rate and high BP was also observed for the increase in <u>pulse wave</u> velocity over time and, interestingly enough, the influence of heart rate on the acceleration of arterial stiffness was mainly observed in hypertensive patients

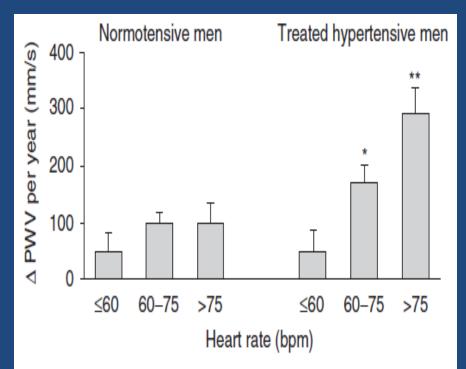
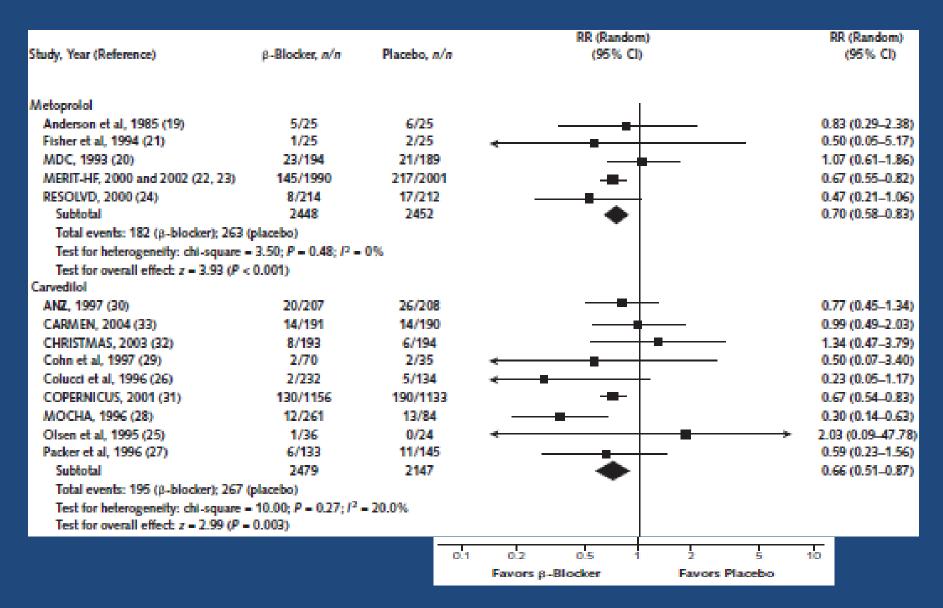



Fig. 2. Progression in pulse wave velocity (Δ PWV) over a period of 6 years according to the heart rate in a study of normotensive and hypertensive men (reproduced from Benetos et al.,^[50] with permission). **bpm** = beats per minute; * p < 0.05 vs heart rate <60 bpm; ** p < 0.001 vs heart rate <60 bpm.

Palatini et.al, Drugs 2006: 66(2); 133-144

Mortality Rate in BB Trials with HF Patients (1)

Mac Alliter . Ann Intern Med 2009 ; 150 : 784-794

Mortality Rate in BB Trials with HF Patients (2)

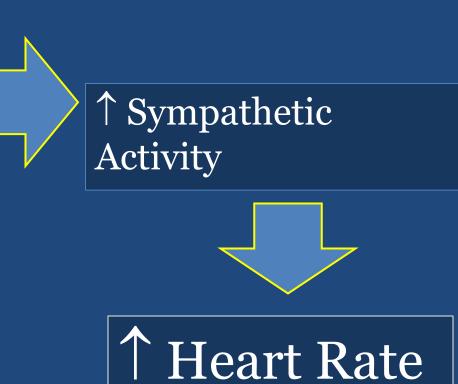
				RR (Rando				RR (Random)
Study, Year (Reference)	β-Blocker, n/n	Placebo, n/n		(95% C	ŋ			(95% CI)
Bisoprolol								
CIBIS, 1994 (34)	53/320	67/321			-			0.79 (0.57-1.10)
CIBIS II, 2001 and 1999 (11, 35)	156/1327	228/1320						0.68 (0.56-0.82)
CIBIS III, 2005 (36)	23/505	32/505						0.72 (0.43-1.21)
Subtotal (95% CI)	2152	2146		•				0.71 (0.61-0.83)
Total events: 232 (β-blocker); 327				-				
Test for heterogeneity: chi-square -	-	0%						
Test for overall effect: z = 4.33 (P <	: 0.001)							
Bucindolol								
BEST, 2001 (39)	411/1354	449/1354						0.92 (0.82-1.02)
Bristow et al, 1994 (38)	4/105	2/34						0.65 (0.12-3.38)
Woodley et al, 1991 (37)	0/30	0/20						Not estimable
Subtotal	1489	1408						0.91 (0.82-1.02)
Total events: 415 (β-blocker); 451	(placebo)			-				
Test for heterogeneity: chi-square -	- 0.17; P = 0.68; P =	0%						
Test for overall effect: z = 1.60 (P =	-0.11)							
Nebivolol								
ENECA, 2005 (42)	7/134	7/126						0.94 (0.34-2.61)
SENIORS, 2005 (41)	169/1067	192/1061						0.88 (0.72-1.06)
Subtotal	1201	1187		_				0.88 (0.73-1.06)
Total events: 176 (g-blocker); 199 (placebo)								
Test for heterogeneity: chi-square = 0.02 ; P = 0.89 ; $l^2 = 0\%$								
Test for overall effect: z = 1.38 (P =	0.17)							
Atenolol								
Sturm et al, 2000 (40)	5/51	8/49						0.60 (0.21-1.71)
Subtotal	51	49						0.60 (0.21-1.71)
Total events: 5 (β-blocker); 8 (place	ebo)							
Test for heterogeneity: NA								
Test for overall effect: z = 0.96 (P =	0.34)							
Total	9820	9389		•				0.76 (0.68-0.84)
Total events: 1205 (β-blocker); 1515 (pl	lacebo)			•				
Test for heterogeneity: chi-square = 29. Test for overall effect: $z = 5.04$ ($P < 0.0$	96; P = 0.09; I ² = 29.	9%						
			0.1 0.2	0.5 1	2	5	10	
			Favors 6	-Blocker	Favors P	lacebo		

Mac Alliter . Ann Intern Med 2009 ; 150 : 784-794

Clinical Consequences of High Rate and Implications of Reducing Heart Rate

Heart rate	Impact	Population
>84 beats/min at rest	Elevated risk for CHD	White men aged 65–74 years; white women aged 45–74 years
Increase of 40 beats/min	>Twofold higher all-cause mortality	Hypertensive persons
50–69 beats/min on admission	15% total mortality at 1 year post-MI	AMI patients
≥90 beats/min on admission	41% total mortality at 1 year post-MI	AMI patients
>110 beats/min on admission	48% total mortality at 1 year post-MI	AMI patients
<90 beats/min	5–7% severe heart failure	AMI patients
≥90 beats/min on admission	24% severe heart failure	AMI patients
14 beats/min decrement within 12 h of symptom onset	25–30% decreased infarct size	AMI patients
5 beats/min increment in heart rate	1.14 higher probability of coronary events	Men and women, mean age 81 years

AMI=acute myocardial infarction; CHD=coronary heart disease; MI=myocardial infarction. Adapted from Habib.²⁵

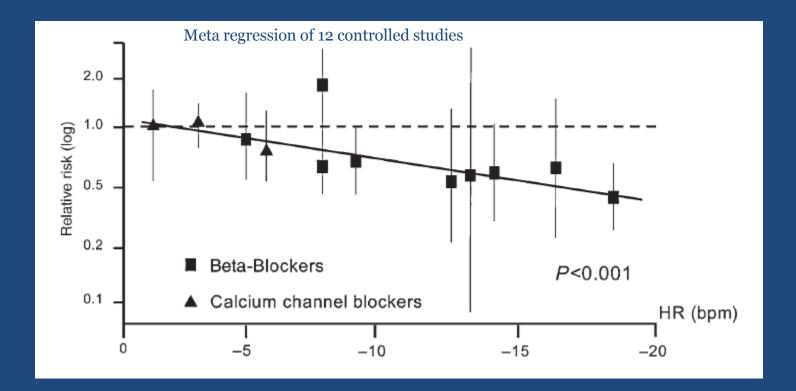

Singh BN. EHJ 2003; 5 (Suppl G) : G3-9

Therapeutic Consideration in Hypertensives

Therapeutic Consideration in Hypertensives

Non Pharmacologically :

- Sedentary habits
- Overweight
- Smoking
- Excessive Alcohol Consumption
- Coffee

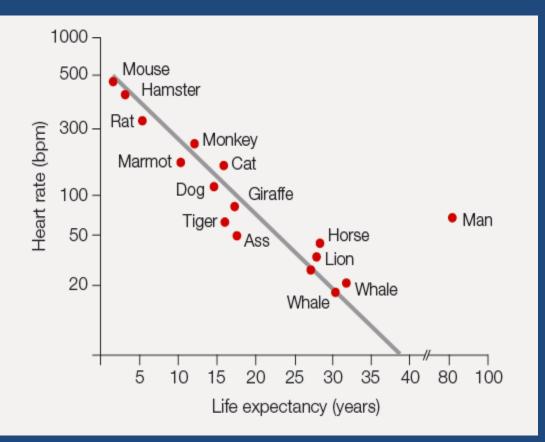


Pharmacologically

- Beta Blockers :
 - In pts with MCI :
 - Benefit is clear when heart rate was reduced by > 14 bpm
 - Only 3rd generation beta blockers
- Calcium Channel Blockers
 - Non Dehydropyridine CCB (Phenylalkiylamines & Benzothiazepines)
- Angiotensin Receptor Blockers :
 <u>AII has an effect on CNS (↑ Sympathetic Outflow)</u>
- Heart Rate Lowering with no effect on BP
 - Ivabradine / Cilobradine / Zatebradine
 - Inhibits the current (I_f) in the Sinoatrial Node

Palatini P. et.al Drugs 2006 : 66(2); 133-144

Heart rate lowering is associated with reduction in cardiac deaths in post – MI patients


Each 10 bpm heart rate reduction = 26 % cardiac death reduction

Cucherat M. EHJ 2007; 28 :3012-19

An Optimal Heart Rate ; Is There Any ?

- When considering a desirable or optimal HR for an individual patient, demographic and measurement factors also must be taken into account ;
 - The HR has been reported to <u>decrease with age</u>
 - HR is <u>higher in women</u> than in men
 - The HR shows a clear <u>circadian rhythm</u>, being substantially higher during waking hours, but the variations are relatively small between 10 AM and 6 PM
 - HR also <u>changes with posture</u>, being some 3 beats/min higher in the sitting compared with the supine position
- A recent consensus meeting recommended <u>measurement of HR</u> by <u>pulse palpation during two 30-s periods</u>, performed in a <u>sitting</u> <u>position</u>, <u>after 5 min sitting</u> in a quiet room.

Inverse linear relationship between heart rate and life expectancy in different species. Bpm, beats per minute.

Tortoise – 6 bmp – Life Exp 177 yrs Rat – 240 pm – 5 yrs

EHJ 2003; 5 (Suppl G) : 10-14

Modified from Levine JH. JACC 1997; 30:1104-1106

"Can human life be extended by cardiac slowing ?"

Identification and management of the hypertensive patient with elevated heart rate: statement of a European Society of Hypertension Consensus Meeting

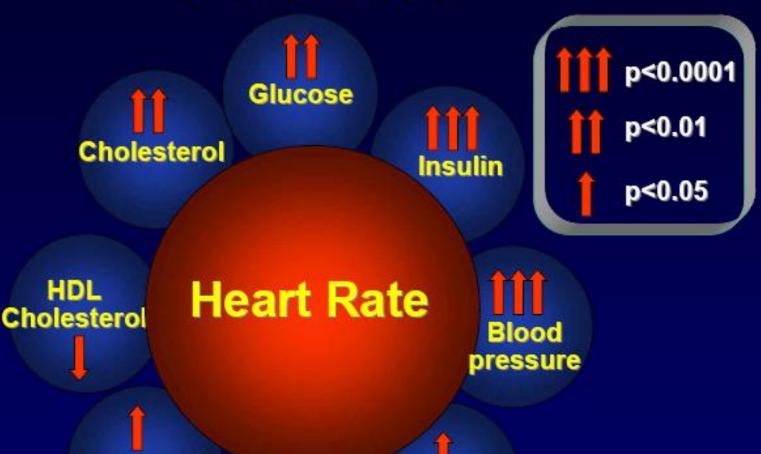
Paolo Palatini, Athanase Benetos, Guido Grassi, Stevo Julius, Sverre E. Kjeldsen, Giuseppe Mancia, Krzystof Narkiewicz, Gianfranco Parati, Achille C. Pessina, Luis M. Ruilope and Alberto Zanchetti

Journal of Hypertension 2006, 24:603-610

Association Between Heart Rate and Mortality Conclusions

Positive association with total and/or cardiovascular mortality in 49 out of 51 Studies

Association independent of other risk factors


Consistency similar to that for smoking

Association present in different clinical settings

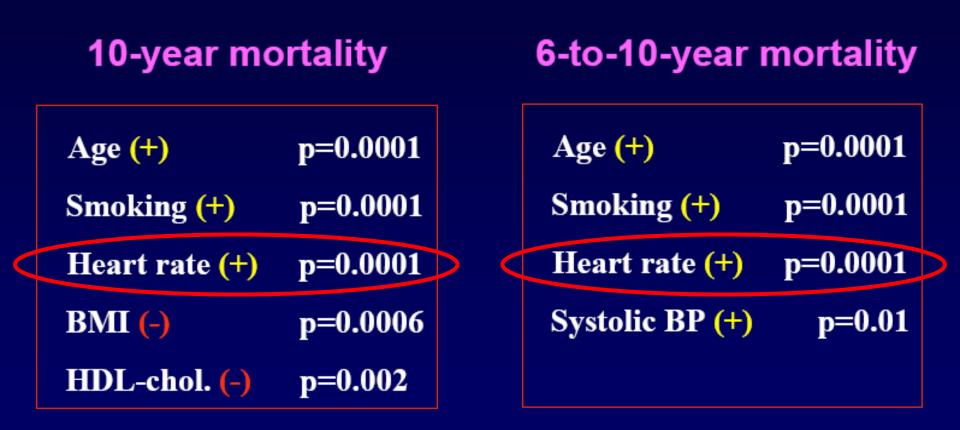
Association still present after exclusion of first years after baseline evaluation

Association with mortality less consistent for women

Association Between Heart Rate and Other Risk Factors for Atherosclerosis

BMI

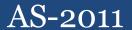
Triglyceride


Hematocrit

Palatini P & Julius S, J Hypertens, 1997

Heart Rate as Independent Risk Factor

- Increased arterial wall stress
- Higher mean blood pressure
- Decreased arterial compliance
- Facilitation to coronary plaque disruption
- Increased cardiac work and oxygen consumption
- Trigger of ventricular arrhythmias


CV Risk Factors and 10-yr Mortality in Elderly Men Living in Finland, Italy, and The Netherland *The FINE Study*

Menotti A et al, Eur Heart J 2001;22:573

Resting Heart Rate • Is Important !!

 Time to put As Risk Factor in Current Guidelines ????

Thank You

Bunaken, 2010